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ABSTRACT 

Radio  frequency  noise  from  lightning was measured  at several  fre- 
quencies  in  the H F  - VHF range during  the  Thunderstorm  Research 
International  Project  (TRIP)  at  the  Kennedy  Space  Center,  Florida. 
The  data were  examined  to  determine flashing rate  statistics  during 
periods  of  strong  activity  from  nearby  storms.  It  has  been  found  that 
the  time  between flashes is modeled  reasonably well  by a  random 
variable with  a  lognormal  distribution. 

Initially,  the  hypothesis  that  the  occurrence of lightning  flashes is a 
Poisson point  process was tested using a  uniform  conditional  test 
with  Durbin’s  transformation  and  the  Kolmogorov-Smirnov  statistic. 
However,  the  Poisson  hypothesis failed for  the  measured  data.  This 
resulted  mainly  from  a lack of small time  intervals,  which we  believe 
is a  consequence  of  the  finite  duration of lightning flashes. This 
hypothesis  has  been  tested by simulation, using a  compound  process 
in  which  the  intervals  between  lightning flashes is assumed to be 
exponentially  distributed  and  each flash is assumed to have a  dura- 
tion given by  another  independent  random variable.  Assuming  flash 
rates  and  durations  consistent  with  data,  and  that  the flash duration 
has  a  fixed  minimum  of  the  order  of  the  measuring  system’s resolu- 
tion,  the  lognormal  distribution  consistently  fit  the  simulated  data. 
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INTRODUCTION 

The  Goddard  Space  Flight  Center  (GSFC)  investigates  radiation  from  lightning  as  part  of  its  pro- 
gram in severe storms  research.  The  long-term goal of  this  research  is to develop  radiation  from 
lightning as a  remote sensing tool  with  which  to  monitor  electrical  processes  in  the  atmosphere  and 
hopefully  to  monitor  the  parent severe storms  themselves  (Christensen,  et al. 1979).  This  research 
also  provides  the  background necessary to  address  the  problem  of  lightning  hazards  control  (White 
and  Haas,  1975; Le Vine,  1978). 

The  fact  that NASA  is  an  organization  oriented  toward  space  applications  sets  some  implicit guide- 
lines  on  the  frequency  range  relevant  for  this  research.  In  particular,  interest  is  focused  on  radiation 
which  penetrates  the  ionosphere  (i.e.,  frequencies  greater  than  a  few MHz)  which  sets  a  lower  bound, 
and because  the  radiated  energy  falls  off  rapidly  with  frequency  (Horner,  1964;  Kimpara,  1965; 
Oh,  1969),  a  practical  upper  bound is several hundred MHz. The  GSFC  program  has focused  on 
radiation  in  the range between 3 - 300 MHz.  Relatively little  is  known  about  radiation  in  this  fre- 
quency range (Pierce,  1977);  consequently,  a  short-term goal of this  work  has  been  to fill the gaps 
in  our  understanding of the  characteristics  of  the  radiation  and  of  the  mechanisms  responsible  for 
its  production. 

The  lightning flashing rate is one  of several parameters of the  radiation  under  investigation.  The 
flashing  rate  is  important  in  the design of  systems  such as communications  systems  and  power dis- 
tribution  networks  which  are  affected  by  radiation  from  lightning.  It  is  a  parameter  of  importance 
in the  development  of  technology to  detect  lightning.  It is  a  parameter  of  general  interest  in  atmos- 
pheric  science  and  it  has even  been suggested  that  the  flashing  rate  may be indicative of the  storm 
severity  (Taylor,  1972  and  1973;  Le  Vine,  1976).  GSFC  has  conducted  research  to  provide  infor- 
mation  on  the  characteristics  of  the  flashing  rate  during  periods  of  strong  activity  from  nearby 
storms. 

DATA 

The  data to be  presented  here  were  obtained  at  the  Kennedy  Space  Center as part  of  the  Thunder- 
storm  Research  International  Project  (TRIP)  and  during  an  independent  experiment  prior to TRIP 
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near  Atlanta,  Georgia  during  the  late  summer of 1975.  The  RF  system used to collect  the  data  con- 
sisted of several  parallel  channels,  each tuned  to  a  different  frequency in the range between 3 and 
300 MHz. Each  channel was comprised  of  a  vertically  polarized  antenna,  filters,  and  an AM detec- 
tor.  The  detector  outputs  from  each  channel were all recorded  simultaneously  on  analogue  tape,  and 
the  effective  bandwidth  of  the  entire  system was 300 kHz  (Le  Vine  and  Krider,  1977;  Le  Vine  et 
al., 1976). In addition  to  the  RF  radiation, slow  electric  field  changes  were  also  recorded.  The slow 
electric field change is a  low  frequency,  broadband  measurement  (near  dc  to 10’s of kHz)  which is 
indicative  of  the flash type  (Uman,  1969). 

A  representative  example  of  data is shown in Figure 1.  Radiation  at  four  frequencies is shown 
together  with  the slow electric field  change (bottom  trace).  The  data  shown  are  a  strip  chart  record 
of signals monitored  during  July  1976  at  the  Kennedy  Space  Center,  Florida.  Each  group of dark 
vertical  lines  corresponds to  a lightning  flash.  Data  such  as  this  were  recorded  during  experiments 
at  TRIP  during  the  summers  of  1976  and  1977,  and  also  for  a  number of storms  during  the  summer 
of 1975  near  Atlanta,  Georgia  (Le  Vine,  et  al.,  1976).  The  data  set  includes several records of the 
complete  growth-decay  cycle of nearby  storm cells. The flashing  rate  generally  reflects  the  build- 
up-and-decay  cycle  typical  of  such  cells  (Byers  and  Braham,  1949).  This is illustrated in Figure 2 
for  a  storm  monitored in July,  1976  at KSC, Florida  during  TRIP.  The  flashing  rate  data will 
obviously  have  trends  as  a  result  of  the  growth-decay  cycle. We have attempted  to  compensate 
for  these  trends in a  minimal  way by partitioning  the  data  into  subsets  of  shorter  duration.  These 
subsets  are  referred to  below  as  “tapes”  and  correspond  to  approximately 12 minutes of data. 
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Figure 1. RF radiation from lightning.  An example of R F  radiation and slow 
electric  field change  data monitored on July 13, 1976 a t  the  Kennedy Space 
Center,  Florida during  TRIP-76. The  vertical scales  are not calibrated. 
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Figure 2. The  lightning flashing  rate  for  an  isolated close cell.  These data 
were  obtained  near  Atlanta,  Georgia on September 12, 1975. 

The  data have  been  analyzed to  determine  the  probability  density  function  and  some  moments  for 
the  time  between  flashes  during  periods  of  strong  activity  from  nearby  storms.  The  time  interval 
between  flashes  was  measured  from  records  such  as  Figure 1 for  four  storms. A time  interval was 
defined to be the  time  from  the  beginning  of  one flash until  the  beginning  of  the  next. A flash  was 
an  event  which  appeared  simuitaneousiy  at all four  frequencies  and  exceeded  an  arbitrary  but small 
threshold  (i.e.,  peak  amplitude).  The  hypothesis  that  the  occurrence of  lightning  flashes  was  a  Pois- 
son point process was adopted initially.  This  hypothesis was tested,  using  a  uniform  conditional 
test  with  Durbin’s  transformation  and  the  Kolmogorov-Smirnov  statistic.  However,  the Poisson 
hypothesis failed for  the  measured  data.  Histograms of the  time  intervals suggest that  the  time 
between  flashes  is  reasonably  well  modeled  by  a  random  variable  with  a  lognormal  distribution. 

The Poisson  process  failed  mainly  from  a  lack of small  intervals  which we believe  is a  consequence 
of  the  finite  duration  of  lightning flashes. Lightning  is  not  a  point  process.  In  fact,  each  lightning 
flash  is  a  complicated  sequence of events  lasting several tenths of a  second.  This  is  illustrated in  Fig- 
ure 3 which  shows  a  representative  cloud-to-ground flash with  significantly  more  time  resolution 
than  in  Figure 1. The  event  shown  in  Figure 3, a  cloud-to-ground  flash,  would  appear as a single 
cluster  of  dark  vertical  lines in Figure 1. In  the  analysis  done  here  the  time  between  lightning 
flashes  was  measured from  the beginning  of one flash to  the beginning  of the  next.  Such  a  measure- 
ment will be  inherently  lacking  in small intervals  because  as  the  time  between  flashes  gets to  be on 
the  order of the flash duration,  the  impulses in one flash will overlap  those  of  the  other;  and  because 
of  the  random  nature of the  impulses in a  lightning  flash, it is virtually  impossible to  distinguish  two 
overlapping  flashes  from  a single  flash of more  complex  structure. 
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Figure 3. R F  radiation and slow electric  field changes of an 
individual  cloud-to-ground  lightning flash. 

In  light  of  this  observation,  it was conjectured  that a  Poisson  process  with  overlaps  may  have  pro- 
duced  the  time  between  flash  histograms  that  the  lognormal  density  fit well. This  hypothesis was 
tested by computer  simulation, using  a compound  process in  which the intervals  between  lightning 
flashes  were  allowed to be  exponentially  distributed,  but  each flash  was  assigned  a duration given by 
another  independent  random variable.  Assuming  flash  rates  and  durations  consistent  with  data,  and 
assuming that  the flash duration  has  a  fixed  minimum  representing  the  resolution of the measure- 
ment,  the  lognormal  distribution  consistently  fit  the  simulated  data.  These  results will be  described 
in the following  sections. 

RESULTS 

Analysis of  the  data  began  with  the  hypothesis  that  the  time  between  events was  Poisson.  This 
seemed  like  a  reasonable  initial  guess  since the Poisson  process  has  been  successfully  used to  de- 
scribe  many  physical  point  processes  and  because  theoretically  one  would  expect  the  time  intervals 
to  be exponentially  distributed if the observed  lightning  were  the  result  of  pooling  many  indepen- 
dent  point processes. 

The Poisson hypothesis was tested  using  a  computer  program  for  the  statistical  analysis  of  series  of 
events called  SASE-V  which  is  a modification  of  the  program SASE-IV written  by  Lewis,  Katcher 
and Weis (Lewis, et  al., 1970).  This is  a Fortran program  which  implements  the  techniques 
described  in the book Statistical  Analysis of  Series of Events, (Cox and Lewis, 1966).  The  length of 
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the  sequence  of  events  that  can  be  handled was reduced  from  1999  to  1024  and  the  double precision 
arithmetic was eliminated to allow the  program  to  run in a  time-sharing mode  on  a UNIVAC  11 08 
computer.  Otherwise,  the  capabilities  of  the  two  programs  are  identical. 

SASE-V performs several tests  on  the  times  between  events. It computes  some  sample  moments, 
the  histogram,  the  log  survivor  function,  the  serial  correlation  function,  the  spectrum.  (periodogram) 
of  the  intervals,  and  the  spectrum  of  the  point  process.  In  addition,  it  performs several uniforni 
conditional  tests,  checking  the  time  intervals  and  periodogram  for  goodness  of  fit  to  the Poisson 
hypothesis.  These  tests  are  described  in  more  detail in Appendix A. Figure 4 shows  an  example of 
the  results  of several of these  tests  on  data  from  a  storm  on  July  13,  1976  at  the  Kennedy  Space 
Center,  Florida.  In  the case of  a  Poisson  process,  the  histogram  (upper  left)  would  be  exponential; 
the  log  survivor  function  (log of one  minus  the  cumulative  distribution)  would  be  a  straight  line 
whose  slope  is the  rate  parameter  of  the  Poisson  process;  the  serial  correlation  coefficient  would  be 
approximately  normally  distributed  about  zero;  and  the  moments  (lower  right)  would have the 
characteristic  values  shown  under  the  column  “Poisson”  in  the  table. 

Many of  the  characteristics  of  the  data  were  consistent, in a  first  approximation,  with  the Poisson 
hypothesis;  however,  the  net  result of SASE-V was to  reject  this  hypothesis.  In  particular, in almost 
all cases, the Kolmogorov-Smirnov  statistic  for  the  uniform  conditional  test  with  Durbin’s  transfor- 
mation  strongly  rejects  the Poisson hypothesis. 

Some  indication  as t o  why  the  Poisson  hypothesis failed can  be  obtained  from  a  more  detailed 
examination of the histograms. For  the  homogeneous Poisson  process, the  times  between  flashes 
should  be  exponentially  distributed;  however,  the  histograms  show  significant  deviation  from  expo- 
nential,  particularly  near  the  origin.  This is especially  evident  in  Figure 5 which  shows  a  histogram 
(from  July 13, 1976)  representative of the:.data. Notice  that  the  density  peaks  near  an  interval of 
one  second  and  then  decreases  rapidly to  %& for smaller  time  intervals.  The  measurement  accuracy 
(minimum  time  interval  discernable  on  the  strip  charts) was on  the  order  of 1 / 10 second  and  is  rep- 
resented  by  the  data gap  near the origin. The rapid  decrease  in  intervals  less  than  one  second  is  a 
characteristic  of  the  data  and  not  a  consequence  of  resolution.  Deviations  from  exponential densi- 
ties  are  also  clearly  apparent in the log  survivor  function  (e.g.,  Figure 4) which  shows  deviations 
from  linearity in the tails of  the distributiqyp, 

On  a  more  general level, the  results  indicate  the  relative  merits of the  uniform  conditional  test  for 
Poisson  processes  with and  without  Durbin’s  transformation.  They  show  that  the  test  without 
Durbin’s transformation  has  very  weak  power  against  many  alternatives.  The  data  clearly suggest 
that  the  uniform  conditional  test  should  not  be used without Durbin’s  transformation  (Tretter  and 
Vaca,  1977).  This is  clearly  evident  in thecolumn  entitled  “Exponential” in Table  I,  Appendix  C, 
which  shows  the  results  of  the  uniform  conditional  test  on  the  time  intervals  with  (DN)  and  without 
(KS) Durbin’s  transformation. 

-. “”i 

:<:!!I;!’ 

The  histograms  clearly suggest distributions  other  than  exponential,  especially  near  the  origin.  Con- 
sequently,  three  alternative  distributions  (lognormal,  Rayleigh  and  gamma)  which  are  zero  at  the 
origin and have  exponential-like  tails  were  chosen  for  comparison  with  data.  The  three  density 
functions  are  shown in Figure 6. For  each  partition of the  data (i.e.,  “tape’’), a  maximum likeli- 
hood  estimate  of  the  parameters  for  each  candidate  probability  density  function was made  and  then 
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Figure 4. Sample  results of tests performed by SASE-V. Data was from July 13, 1976 a t  the Kennedy Space Center, Florida. 
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a  Kolmogorov-Smirnov  goodness-of-fit  test  for the  distribution was made  against  the  data  (Appen- 
dix B). Table 1 of  Appendix C shows  the  results  of  these  tests  for  four  storms  (August 5 and 
September 12, 1975  in  Atlanta,  and-July 13, 1976  at  the  Kennedy  Space  Flight  Center,  during , 
TRIP).  None  of  the  choices is consistently  accepted  as  a  strong  candidate.  However,  the  Ray- 
leigh  distribution is strongly  rejected  in  most cases. The  gamma  distribution  function  is  occasionally 
strongly  rejected.  The  lognormal  density is  rarely  rejected  and is accepted  more  often  and  at  better 
levels than  the  others. 
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Figure 5. A representative example of  the histogram for  the  time between 
flashes.  These data are from tape #2, July 13, 1976 
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Figure 6. The  probability  density  functions tested against the data. 
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Figure 7 is  a plot of the  best fit density  functions  against  data  from  tape #2 of  the  July  13,  1976 
storm  and is  representative of the results.  The  lognormal  density  appears to fit  the  data  best 
because  it  is  more  peaked  and  because  of  its  rapid  decrease  near  the  origin. 
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Figure 7. The best fit probability density functions and  associated histogram. 
Data is  from tape #2, July 13,  1976 (KSC, Florida). 

ANALYSIS 

On  the basis of  the  results  of SASE-V and  examination  of  histograms,  it  seemed  clear  that  a  lack  of 
small intervals  contributes  greatly to  the failure  of  the  Poisson  hypothesis.  The  lack of small inter- 
vals is to  be  expected  for  events  of  finite  duration  such  as  lightning.  This is so because  when  the 
time  between  events is small,  overlaps  can  occur  and  with  lightning  it  is  not  possible to  distinguish 
overlapping flashes from  individual flashes. In  such  a case,  even if  the  occurrences  of  lightning 
flashes  were in fact  Poisson,  the  observed  time  intervals  would  not  be  exponentially  distributed.  It 
is possible that  a  lognormal  density, as was observed for  the  measured  data, is a  close  approximation 
to the  true  density  function  for  such  a  process.  That  is,  the  results  of SASE-V as  described  above 
may  in  fact  not  preclude  a  Poisson  model  for  the  occurrence  of  lightning.  Determining  the  true 
density  function  for  such  a  Poisson  process  with  overlap is difficult  analytically,  and so it was 
decided  instead to examine  this  problem using a  computer  simulation.  The  objective was to see if 
a  Poisson  process of finite  events  with  overlaps  resulted  in  histograms  consistent  with  the observa- 
tions  of real lightning. 

The  principle  behind  the  simulation  is  illustrated  in  Figure 8. The  idea was to generate  a  marked 
process  by  associating  with  the  occurrence  times  a  new  random  variable  for  the  duration  of  the  flash. 
Thus,  the  computer  generates  sample  values  for  two  random  variables, T and u. The T~ represent  the 
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Figure 8. Simulated  lightning occurrences. The  simulation consisted of a  marked 
process in  which each  occurrence is associated with  another  random variable for 
the  duration.  Overlapping events such as T, and T, become  one  event of longer 
duration. 

time  between  the  beginning of one  lightning flash and  the  beginning  of  the  next. To each T~ is 
assigned a (si which  represents  the  duration  of  the  i-th  flash.  An  example  of  a  portion  of  the  result- 
ing  sequence  of  events is shown  in  Figure 8. Having ordered  the  events  as  shown  in  the  figure,  a 
search is made  for  overlapping  events  (e.g.,  the  second  and  third  events in Figure 8). In  the  case  of 
an  overlap,  the  overlapping  event  becomes  part of the original event  (flash T, becomes  an  extension 
of T2),  and  the  time  intervals, T ~ ,  are  adjusted  accordingly.  The  result is a  set of 3, for  a  sample 
space  with no  overlaps  and  corresponding to the  events  which  would  be  observed in experiments 
such as  were actually  performed  in  Atlanta  and  during  TRIP. 

The  simulation was executed  for several choices  of T and o; however,  the case in which the T~ were 
exponentially  distributed was of special interest.  Figure 9 is the  histogram  resulting  when  the T~ were 
exponentially  distributed  and  the  durations were modeled  as  a  constant  (representing  the  measure- 
ment  resolution)  plus  an  exponentially  distributed  random variable.  Various combinations  of  rate 
parameters  and  constants were tested.  Figure 9 is typical of the  results  obtained  when  rate  param- 
eters  consistent  with  observed  data  were  used.  Clearly,  Figure 9 is suggestive of  the  histograms 
obtained  from  measurements  on real lightning  (e.g.,  Figure 5) .  Other  distributions  such as uniform 
and  Rayleigh  were  also  tried  for  the T ~ .  They  resulted in density  functions  for  the ti which  were not 
representative of the  measured  data. 

To make  the  comparison  more  quantitative,  histograms  were  produced  from  simulated  data using 
a range of  parameters  representative  of  data  (e.g., T~ exponential, oi exponential  plus  a  constant, 
and  with  rate  parameters  for  each  chosen  to  be  consistent  with  data).  The  resultant  simulation 
was then  fitted  with  the  gamma,  Rayleigh  and  lognormal  densities  as  had  been  done  previously 
for  the  measured  data  (Appendix B). Tables 2-4, Appendix C, are  summaries  of  the  results. 

In  general,  the  Rayleigh  density  function  was  rejected  consistently, as  was true  with  the  measured 
data;  the  gamma  density  generally  was  a  best  fit  when  the  mean  time  between  flashes was  large and 
in  fact  it is the  theoretical  limit  in  the case of  no  overlaps;  and  the  lognormal  density  fit  best  when 
the  mean  time  between  flashes  was  comparable  to  observed  values  (overlaps  important).  The  results 
suggest that  a  Poisson  process  in  which  overlaps  are  important  could  result  in  time  intervals  distrib- 
uted  like  those  observed  in  our  measurements  on  lightning. 
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Figure 9. Histogram of the observed time between events obtained with 
the  simulation.  For  the  time  between events, the  simulation  employed 
an exponentially  distributed  random variable  and an exponentially 
distributed random variable plus a constant for  the durations. 

CONCLUSIONS 

Our  inferences  are based on several storms,  but  more  examples  are  really  needed  before  unequivocal 
conclusions can be  drawn.  However,  the available data  and  the  comparison  of  simulated  data  and 
real data  as  compiled to date, suggest that  the  lognormal  density  is  a  reasonable  choice  with  which 
to describe the  time  between  lightning flashes for  periods  of  strong  activity.  It  also suggests that 
this  density  is  consistent  with  the  model  of  lightning as a  compound  Poisson  process  in  which over- 
laps  are  important. 
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APPENDIX A 
SASE-V 

Lewis, Katcher  and Weis have written  a  FORTRAN  program  called SASE-IV for  the  statistical 
analysis  of  series of events  (Lewis, et  al., 1970).  The  program  implements  the  techniques  described 
in the  book, The  Statistical  Analysis of Series of Events, by Cox and Lewis (1  966).  This  program 
has  been  modified to  run  on  the University  of  Maryland UNIVAC 1108 computer in the  batch  or 
demand  modes  and is called SASE-V. The principal  modifications  are  the  reduction  of  the  length 
of  the  sequence  of  events  that  can be handled  from  1999  to 1024 and  the  elimination of double 
precision  arithmetic.  Otherwise,  the  capabilities of SASE-V and SASE-IV are  identical  and  are 
described in detail in Lewis, et  al. (1  970).  The  statistics  computed  and  tests  performed  by SASE-V 
that have  been found to be  particularly  useful  in  the  analysis  of  lightning  data  are  summarized  in 
this  section. 

1. Sample  Moments 

Let x l ,  . . . , xN be  a  sequence of N  positive  numbers.  Normally,  these  numbers  would  be the  times 
between  events in a  point  process. SASE-V computes  the following  sample moments  and  normal- 
ized moments: 

(a) Sample  mean 

1 N  

N n=l 
; = -  x 

‘n 

(b) Sample  variance 

(c)  Sample  standard  deviation 

(d)  Coefficient  of  variation 

(e) Third  central  moment 

A- 1 
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(0 Coefficient of skewness 

9 = fi31a3 

(8) Fourth central  moment 

N(N2 - 2N + 3) N 

" - (N-1) (N-2)  (N-3) n=l  
A -  3m-1)  (2N-3) z (Xn - b)4 - ^a4 

0 - 1 )  (N-2)  (N-3) 

(h) Coefficient of Kurtosis 

Many physically  observed  point  processes  are  accurately  modeled  as  homogeneous Poisson  processes. 
A reasonable  first  step  in  the  analysis of a  point  process is to see  if  the Poisson model  applies. A 
simple  check  is to  compare  the  sample  moments  defined  above  with  the  theoretical  statistical  mo- 
ments.  The  times  between  events  in  a  homogeneous Poisson process  are  independent,  identically 
distributed  random variables with  an  exponential  probability  density  function,  say  f (x) = he-' x u  (x) 
where u (x) is the  unit  step  function. In this  case  the  ideal  moments  are: 

(a) p = E { X /  =x-' 

(h) k = fi, /u4-3 = 6 

2. The  Sample  Distribution  Function,  Log  Survivor  Function,  and  Histogram 

SASE-V computes  the  sample  distribution  function  for  the  sequence 1 xn 1 as 

FN(x) = 
number of x,'s < x  

N 

This is an estimate  of  the  actual  distribution  function F (x) = P { X  < x{. 
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The  function R (x) = 1 - F (x) is  called the survivor  function. SASE-V estimates R (x) as 

RN(x) = 1 - FN(x) 

It  computes  and  plots  the  log survivor  function 

GN(x) = I n  RN(x) 

For  the Poisson  process,  G (x) = 1 n R (x) = -Ax. Thus  deviations  from  linearity  in  the.  plot of 
G, (x) give insight into  how  the observed  processes  differ  from  an  ideal  Poisson  process. Another 
closely related  function  is  the  hazard  function 

d 
h(x) = -- G(x) = - 

dx 1 - F(x) 
f(x) 

The  hazard  function  can  be  estimated  from  the  plot of the log  survivor function.  For  the ideal 
Poisson  process,  h (x) = A. 

SASE-V makes  a  direct  estimate  of  the  probability  density  function  for  the  random  variables{X,,I 
by  computing  and  plotting  a  histogram  for  the  observations{xn 1. 
3 ,  Goodness-of-Fit  Tests  for  the Poisson  Process 

SASE-V performs several  goodness-of-fit  tests to  check if the  homogeneous Poisson  process hypo- 
thesis  is  statistically  reasonable. A11 of  these  tests  are based on  the  fact  that if a  homogeneous Pois- 
son  process is observed  over the interval (0 ,  T),  the observed  normalized arrival times 

are  the  order  statistics  of  a  random  sample  of  size N from  a  population  uniformly  distributed  over 
(0, 1).  Tests based on  this  fact  are  called  uniform  conditional  tests.  These  tests  are  particularly 
convenient  for  the Poisson hypothesis  because  the  rate  parameter h need  not  be  estimated  and  no 
grouping-of  data is required. 

Let  the  sample  distribution  function  for  the  normalized arrival times  be 

number of yi < y 

-N FN(Y) = 

I 



A 4  RATE  STATISTICS FOR RADIO  NOISE FROM LIGHTING 

For the  homogeneous  Poisson  process  hypothesis,  the  theoretical  distribution  function  would  be 

SASE-V computes  the  following  four  statistics: 

(a)  The  One-sided  Kolmogorov-Smimov  Statistics 

D+N =@SUP [FN(Y) - y] = f i  maX [F- yi] 
1 

0 , C y G l  1 S i G N  

D-N = f i  sup  [y - ~ ~ ( y ) ]   = f i m a x  [yi -- 1 
i-I 

N 

O G y G l  1 G i G N  

(b) The  Two-sided  Kolmogorov-Smirnov  Statistic 

(c) The  Anderson-Darling  Statistic 

1 N  

N i=l 
= -N -- X {(2i-1) I n  yi + [2(N-i) t I ]  I n  (I-yi)/ 

Each of  these  statistics gives a  measure  of  the  deviation of F, (y> from the  hypothesized  distrib- 
ution F (y) = y. The Anderson-Darling  statistic  emphasizes  deviations  near 0 and 1 as a  result  of 
the  factor  y(  I-y) i n  the  denominator. 

These  statistics  are  used by selecting  a  threshold  z  and  rejecting  the  hypothesis H, , that  the  proc- 
ess is a  homogeneous Poisson process, i f  the  threshold is exceeded.  The  threshold is selected so 
that  the  test  has  a  desired level a, that is, so that 
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Asymptotic  formulas  for  the levels of the  Kolmogorov-Smirnov  statistics  are  derived  in  Kendall  and 
Stuart  (1961).  The  asymptotic  formula  for  the two-sided  Kolmogorov-Smirnov  statistic is 

The  approximation is satisfactory  for N 2 80. Values of this  expression  for  a  range of z are given  in 
Table 5 ,  Appendix C. A  table of asymptotic levels for  the  Anderson-Darling  statistic is given by Lewis 
(1961). 

The  power  of  a  test is defined to  be  the  probability  that  the  null  hypothesis H, is rejected given 
that  an  alternative  hypothesis H, is true.  Tests  for  the  null  Poisson  hypothesis  based  on  the  uni- 
form  conditional  property  are  not  very  powerful  against  a  variety  of  alternatives.  For  example, 
suppose  that  the  normalized  arrival  times{  yij  are  equally  spaced in the  interval (0, 1). Then F, (y) 
remains  close to  F (y) = y.  Durbin  (1  96  1)  has  suggested  a  modification of the  uniform  conditional 
tests  that give a large increase in power  over  the  uniform  conditional  tests  for  a  broad class of alter- 
natives. The first  step  in  Durbin’s  modification is to  order  the  sequence  of  times  between  events 
(xn  1 to  obtain  the observed  order  statistics 

The  next  step is to  compute  the  sequence 

x(l) ‘(i-1) x(i ) 
wi =-+- + . . . + -  + ( N + 2 - i )  - 

tN ‘N 
for i= l ,  . . . , N-1 

‘N t N  

where 

It  can  be  shown  that  under  the  null  Poisson  hypothesis,  the  sequence  {wi 1 has  the  same  distributional 
properties  as  the  sequence  {yi 1. Thus,  the  Kolmogorov-Smirnov  and  Anderson-Darling  tests  de- 
scribed  above  can be applied to  {wi).  The  statistic, D, , computed  by  SASE-V  has  been  labelled KS 
when  Durbin’s  transformation is not used  and DN  when  Durbin’s  transformation is used. 

4. Serial  correlation  coefficients 

SASE-V computes  the serial  correlation  coefficients 
N -j 

p .  = - ,, N i=l 

N-j N 

(Xi - PI (xi+j - f i )  

Z (Xi-/2)2 
i=l 

I 
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for j = 1 ,  2, . . . , min (N/2, 100) where fi  is the  sample  mean.  This  sequence  is  an  estimate of the 
autocovariance  function 

pj = cov (Xi,  Xi+j) / var (Xi) 

Under  the  hypothesis  that  the x" 's are  uncorrelated,  that  is, pj = 0 for j f 0, the dj's are approxi- 
mately  normally  distributed  with  zero  mean  and variance (N-j)'" . This  approximation is  reasonable 
for N 2 100 if the skewness is moderate. SASE-V plots (N-j)" fij as a  function of j .  

A renewal  process  is  a point process in which the  times  between  events  are  independent,  identically 
distributed  random  variables.  The  homogeneous Poisson process is a  special type of  renewal  process. 
Independent  random variables in a  set  are  always  uncorrelated.  However,  a  set  of  uncorrelated  ran- 
dom  variables  may or  may  not be  independent.  Thus,  the serial correlation  coefficients  can  indicate 
whether  or  not  a renewal  process  model  is  appropriate. 

5. Spectrum of the  Intervals 

SASE-V estimates  the  spectral  density.of  the  sequence of times  between  events  as 

where an is the Parzen  window,  that  is, 

1 - 6 -  (i)i t 6  ( I ; ' ) '  - for I n  l < M / 2  

M 
2 

for-< In IM 

0 elsewhere 

It  also  computes  the  discrete  Fourier  transform 
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and  the  periodogram 

C, = I B, 12/N for k=O, . . . , N-1 

It  can  be  shown  that if the  times  between  events  are  independent  identically  distributed  random 
variables, then  the values of C, for 0 < k < N/2 are  asymptotically  independent,  identically dis- 
tributed  random variables  with the  exponential  density.  Consequently,  the  goodness-of-fit  tests 
described  in  Section 3 can  be  applied to  the  periodogram  to  check  the  renewal  process  hypothesis. 
SASE-V  applies the Kolmogorov-Smirnov  and  Anderson-Darling  uniform  conditional  tests to  the 
periodogram. 

6. Spectrum-of-  the-Point  Process 

SASE-V estimates  the  spectrum-of-  the-point  process in the following  way: 

Let 

and 

I(k) = 2 I A(k) I /(N-l)  

for  k = 1 ,  2, . . . , P. B is normally  chosen  as  2a/(N-1).  P  should  be  chosen to  be  larger  than  N. 
Usually all the  important  features of the  spectrum will be  shown if P = 2N.  SASE-V smooths 
I(k) over 5, 10,  and  20  points  using  a  rectangular  window,  and  plots  the  results. 

Theoretically,  the  spectrum  for  a  homogeneous  Poisson  process  would  be  flat. 
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APPENDIX B 
CANDIDATE  DENSITIES 

The  Gamma  Densitv 

The  gamma  density is 

where  h  (x)  is  the  unit  step  function  and 

m 

r (r) = tr-' e-t dt  
0 

is the  gamma  function.  Notice  that  for  r = 1, the  gamma  density  reduces  to  the  exponential  den- 
sity.  The  expected  value  for  a  gamma  random  variable X is E{ X \ = u,  the  variance is u2 = u2 /r,  and 
the  coefficient  of  variation is C = o/u = r-' / ' .  

The  log  likelihood  function  for  a  random  sample is 

In f ( x l , .  . . , x n )  = C In f(xi) 
n 

i= 1 

The  maximum  likelihood  estimates for r  and u satisfy 

a 
a r  
- In f ( x l , .  . . , xn) = 0 

and 

a 
a u  
- In f (xl,. . . , x n )  = 0 

B- 1 
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From  the  second  equation  we  find  that  the  maximum  likelihood  estimate  for  u  is 

Substituting 6 into  the  first  equation, we find  that  the  estimate  for r must  satisfy  the  transcen- 
dental  equation 

where 
d 

$ (x) = - In r (X) 
dx 

is the  digamma  function. 

The Rayleigh Density : 

The Rayleigh  Density is 

In this case E{XI= u r n  and  var x = u2 (2 - 7r/2). The log  IikeIihood  function  for  a  random 
sample  is 

n n 

x = -n ~n u2 + In xi - -x x; In f (x , ,  . . . , . 
2 

Differentiating  with  respect to u2 and  setting  the  result  to  zero,  the  maximum  likelihood  estimate 
is  found to be 
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I t  can  be  shown  that  this  estimate is unbiased, i.e., E{ g2 \ = u2 ,  and  has  the  variance u4 In. 

The  Lognormal  Density: 

B-3 

The  lognormal  density is 

The  random  variable Y = In X is normally  distributed  with  mean m and variance u2. The  log likeli- 
hood  function  for  a  random  sample  is 

l n f ( x , ,  . . . ,  xn) = 

By setting  the  partial  derivatives 
estimates  are  found t o  be 

with  respect to m and u equal to  zero,  the  maximum  likelihood 

and 

" 





APPENDIX  C 
Lightning  Data and Computer Simulation 

Table 1 presents  the  results  of  tests  made  on  data  from  four  storms  in  August  and  September, 1975 
near  Atlanta  and  in  July  1976  during  TRIP  at  the  Kennedy  Space  Center.  The  column  entitled 
“exponential”  presents  the  results  of  a  uniform  conditional  test  on  the  time  intervals,  testing  for 
Poisson statistics.  The  statistic,  KS, is the  result  of  the  test  without  Durbin’s  transformation,  and 
DN  is the  statistic  for  the  test  with Durbin’s transformation.  The  histogram  of  some  of  this  data 
was also  tested  against  candidate  density  functions (see Appendix B). The  results of these  tests  are 
given in  the  last  three  columns.  The significance of  the  statistic, KS or DN,  is given in  Table 5. 

Table 2 presents  results of the  simulation.  Data were simulated  assuming  an  exponentially  dis- 
tributed  time  between  events (7). In all examples  shown  in  Table 2 the  mean  interval  between 
events  is  one  second.  The  duration ((5) of  each  event was modeled as a  constant  (c)  plus  an  expon- 
entially  distributed  random variable with  rate  parameter X.  The  mean  duration is <o> = I / X  + c. 
In Data  Set A the  constant is zero,  and  in  Data  Set B the  duration was a  constant,  c,  only.  The size 
of the  constant is varied in the  remaining  examples. Each set of simulated  data was tested against 
the  three  density  functions  shown:  Gamma, Rayleigh  and Lognormal.  The significance of the KS 
statistic derived  in this  test is given in  Table 5 .  

Table 3 presents  additional  results  of  the  simulation. I n  Table 3 ,  data  are  presented  in  which 
the  time  between  events is varied. In these  examples  the  time  between  events is exponentially 
distributed  with  durations  which  are  modeled  as  a  constant,  c,  plus an exponentially  distributed 
random variable. The  rate  parameter, X, of  the  random variable and  the  constant  are  fixed  such  that 
Xc = 1 and  c = 1/6. This  corresponds  to  a  mean  duration of 1/3 second.  The  first  row  in  this  data 
set  pertains  to  events  which  are  on  the average 8 seconds  apart (a low  flashing  rate)  and  the  last  row 
corresponds t o  events  which  are  on  the average 1 second  apart  (a high  flashing rate).  Notice  that 
the  lognormal  density  fits  best  in  the  case of the high  flashing rate  where  overlaps  are  most 
important. 

In  Table 4, results  are  shown  for  an  example  where  nonexponential  statistics  were  used  for  the  time 
between  events.  The  data  here  were  obtained  assuming  that  the  time  between  events  had  a  density 
function  of  the  form  exp  (-at2)  with  a  mean  interval  of 1 second.  The  duration was a  constant  plus 
an  exponentially  distributed  random  variable  as  above.  Notice  that  the  lognormal  density  is re- 
jected  for  this case. Other  nonexponential  functions were  also  tried  for  the  distribution  of  the  time 
intervals  with  similar  results. 

Table 5 shows  significance levels for  the Kolmogorov-Smirnov  statistic, KS. 
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c - 2  

storm 
Date 

8/5/75 

8/26/75 

911 2/75 

Tape 
Number 

1 
2 
3 
4 
5 

1 
2 
3 
4 

1 
2 
3 
4 
5 

711 3/76 (all  flashes) 
1 
2 
3 

RATE STATISTICS FOR RADIO NOISE FROM LIGHTNING 

Sample 
Mean 

3.50 
2.90 
1.80 
1.40 
6.10 

0.86 
1 .os 
1.48 
1.74 

2.40 
1.20 
1.70 
1.80 
2.40 

1.91 
1.94 
2.32 

1 ; 1 qi:; (cloud-to-ground  flashes) 

KS = Kolmogorov-Smirnov  statistic 
DN = Durbin’s  transformation 

Table 1 
Lightning  Data 

~~ 

Sample 
Variance 

3.00 
2.30 
1.60 
1.40 
6.90 

0.50 
0.64 
0.87 
1.02 

1.60 
0.80 
1.10 
1.30 
1.70 

1.20 
1.30 
1 . so  

17.6 
08.7 
14.8 

L 

- 

0.63 
1 .os 
0.70 
0.89 
2.90 

0.72 
0.8 1 
0.56 
1.19 

0.68 
1.18 
0.79 
1.43 
0.84 

2.09 
1.44 
1.24 

I .48 
1.70 
L O O  

- 
DN 

1.40 
2.64 
3.32 
2.20 
2.00 

8.23 
9.12 
6.68 
7.92 

4.50 
9.02 
4.82 
6.30 
2.89 

8.46 
7.30 
6.63 

3.76 
1.63 
1.94 

Gamma 
KS 

1.70 
6.50 
0.96 
1.02 

1.18 
12.3 
0.94 
1.49 
0.85 

57.1 
1.51 
1.66 

Rayleigh 
KS 

3.10 
3.50 
2.00 

.2.30 

2.60 
3.60 
2.70 
4.30 
2.40 

2.67 
3.64 
3.59 

Lognormal 
KS 

1.93 
1.54 
0.86 
1.47 

0.67 
1.54 
1.23 
1.01 
1.30 

0.83 
0.7 1 
0.82 



APPENDIX C - LIGHTNING DATA AND COMPUTER  SIMULATION c - 3  

Table  2 
Computer  Simulations  for  Exponential  Time  Interval 

M 
<0> 

Data 
0.50 
0.33 
0.25 
0.20 

Data 
0.50 
0.33 
1.25 
0.20 

:an Duration 
x-1 I C 

Set: A (Exponential 
0.50 

0 0.20 
0 0.25 
0 0.33 
0 

Sample 
Mean 

juration) 
1.67 
1.37 
1.29 
1.23 

Set: B (Constant  duration) 
00 
00 

1.67  0.50 

1.22 0.20 00 
1.27 0.25 00 
1.39 0.33 

Data  Set:  C (hc  
0.50 

0.22 0.33 
0.33 

0.13 0.20 
0.17 0.25 

Data  Set:  D (hc  
0.50 

0.1  7 0.33 
0.25 

0.10 0.20 
0.13 0.25 

Data  Set:  E  (hc 
0.50 
0:33 I !g 
0.25 
0.20 

__- 

= 1/2) 
0.1 7 
0.1 1 
0.08 
0.07 

= 1 )  
0.25 
0.17 
0.13 
0.10 

1.65 
1.39 
1.28 
1.22 

1.66 
1.39 
1.29 
1.22 

Exponential  interval  for all cases 
Mean interval = 1 sec. 
Mean duration = x-' + c = <u> 

Sample 
Variance 

1.54 
1.10 
1.12 
1.06 

1.01 
1.02 
0.96 
0.95 

1.12 
1.13 
1.01 
0.98 

1.18 
1.14 
1.01 
0.99 

1.26 
1.20 
1.03 .* 
0.99 

Gamma 
KS 

0.63 
0.65 
0.85 
1.24 

26.40 
3.14 
5.45 
2.57 

6.48 
21.80 

1.91 
2.03 

64.90 
481.30 

2.34 
2.27 

173.00 
1916.00 

2.50 
25.00 

Rayleigh 
KS 

6.98 
7.67 
8.80 
9.83 

4.50 
7.89 
8.40 
9.40 

5.60 
7.90 
8.90 
9.70 

5.45 
7.95 
8.96 
9.76 

5.30 
7.90 
9.20 
9.70 

Lognormal 
KS 

2.65 
2.43 
2.3 1 
2.10 

1.60 
1.50 
1.20 
1.80 

1 .oo 
1.20 
1.14 
1.10 

0.67 
0.90 
1.36 
i .05 

1.04 
1.14 
1.46 
1.22 
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Table  3 
Computer  Simulation  for  Variable  Interval 

~ ~~ "" 

Mean Gamma Rayleigh Sample Sample Mean Duration 
Interval 

KS 1 KS 
Variance Mean C A- <U> 

8 0.33 

7.60 2.42 0.98 1-36 I 0.17 0.1 7 0.33 1 
8.90  2.34 1.79 1.72 0.1 7  0.17 0.33 3 

12.10 1.86 17.20 4.46 0.17  0.17 0.33  4 
11.70 1.08 0.60 8.45 0.17 0.1  7 

- 
~~ 

Exponentional  time  intervals 
Variable  mean  interval 
Duration  fixed = 0.333 sec. 
h c =  1 
Mean duration = h-l + c = 1/3 

Table  4 
Computer  Simulation  for  Nonexponential  Duration 

Mean Duration Sample  Sample 
<U> Variance Mean A- l  1 C 

0.50 

0.55 1.22 0.13 0.13  0.25 
0.47  1.23 0.17  0.17 0.33 
0.52  1.48 0.25 0.25 

0.20 0.47 1.17 O.l0  O.l0 

Lognormal 

I 

2.40 
2.08 
1.35 
0.99 

~ 

Lognorm a1 
KS 

2.00 
1.90 
1.75 
2.64 

Time  intervals  density of the  form  e-atL 
Mean durations = h-' + c 
Mean interval = 1 sec 

... ." . . ." .. . 



APPENDIX C - LIGHTNING DATA AND COMPUTER  SIMULATION 

Table 5 
Asymptotic Significance Levels for the 

Kolmogrov-Smirnov Statistic 

z 

.10 

.15 

.20 

.25 

.3 0 

.3 5 

.40 

.45 

.so 

.55 

.60 

.6.5 

.7 0 

.7.5 

.80 

.8 5 

.90 

.9 5 
1 .oo 
1.05 
1.10 
1 . 1 5  
1.20 
1.25 
1.30 
1.3.5 
1.40 
1.45 
1.50 
1 ..55 
1.60 
1.65 
1.70 
1.75 
1.80 
1.8.5 
1.90 
1.95 
2 .oo 
2.05 
2.10 
2.1 5 
2.20 
2.25 
2.30 
2.35 
2.40 
2.45 
2.50 
2.55 

. l  ooooooo+o 1 

. l  ooooooo+o 1 

. l  ooooooo+o 1 

.99999999+00 

.99999070+00 

.999697  14+00 

.99719233+00 

.98741063+00 

.96394525+00 

.9228  1682+00 

.86428282+00 

.7920  1308+00 

.7 1123.525+00 
,627  167 1 1 +00 
.54414248+00 
.4653  1929+00 
.39273078+00 
.32748555+00 
.26999973+00 
.22020562+00 
.17771825+00 
.14195991+00 
.11224971+00 
.87866448-01 
.68092250-01 
S2241911-01  
.39681899-01 
.29841489-01 
.22217975-01 
.16377412-01 
.11952054-01 
.86356858-02 
.6 1774354-02 
.437498.56-02 
.30676239-02 
.21295343-02 
,14636061-02 
.9959 1 1  77-03 
.67092590-03 
.447492  13  -03 
.29549713-03 
.19318713-03 
.12504322-03 
.80130748-04 
.50838800-04 
.3  1933641-04 
.19859059-04 
.12227169-04 
.74533286-05 
.44981264-05 
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